# 物理1

• 课程信息
• 课程目录

AP物理1

（AP Physics1）是以代数为基础的大学初级物理课程。它包含牛顿力学、功、能量、功率、机械波和声音以及电路，换句话说，就是学习基本物理概念。AP物理1是最初级的物理课程，是一门不需要任何背景知识的课程。

AP物理1考点

1、运动学&牛顿定律(kinetics,dynamics)

运动学和牛顿定律是力学的基础，往往跟力学的各个章节结合起来，也经常跟电磁学结合起来考查，是考试的重点。

这一部分的主要考点包括：

uniformly accelerated motion 匀加速运动

velocity-time diagram 速度-时间图

projectile motion 抛体运动

Newton’s Law 牛顿定律

Free-body diagram 受力分析图

2、功&能&动量（work,energy, impulse)

功能这一部分是力学的核心，还特别容易和振动、摆部分综合出题。

其主要考点集中于：

work 功

energy conservation 能量守恒

kinetic and potential energy 动能与势能

the conservation of mechanical energy 机械能守恒

power 功率

impulse 冲量

conservation of linear momentum 动量守恒

elasticand inelastic collision 弹性和非弹性碰撞。

3、圆周运动和转动(circular motion, rotational motion)

这部分内容对大多数学生来说是个难点，但是物理1这部分不会考定量计算，只会考对概念定性的理解，难度并不是太大。

其考点主要有：

Uniformly Circular Motion 匀速圆周运动

Newton’s Law of gravitation 牛顿万有引力

Torque 力矩

equilibrium 平衡

Rotational kinematics 转动运动学

Rotational Dynamics 转动力学

4、振动和波 （oscillation & wave）

振动和波这部分属于考试的重点，而这部分内容又是高中物理所不太涉及到的地方，需要同学们着重复习一下。

主要的考点有：

Simple Harmonic Motion 简谐振动

Pendulum 摆

Traveling waves 行波

Standing waves 驻波

Doppler effect 多普勒效应

5、电场力和纯电阻电路 (electrostatics and DC circuits)

这部分知识点在物理1、2的考试中都有涉及，主要是在物理2的考试中出现，在物理1中相对比较简单。

主要涉及的考点有：

Electric Forces 电场力

Electric Fields 电场

Conductor 导体

Ohm’s Law 欧姆定律

Electric power 电功率

考试形式和时间分部

考试时间——180分钟

第I卷（权重50%）：选择题，计算器可以使用

45个单选题（四选一），5个双选题（四选二，只有全部选对才可以得分，漏选和选错都不得分）

总计90分钟，50题

第II卷（权重50%）：解答题，计算器可以使用

90分钟，5题

公式合集

 Equivalent capacitance (capacitors in series) Ceq =/ (( /C₁)+( /C₂)+( /C₃))

 Equivalent capacitance (capacitors in parallel) Ceq = C₁ + C₂ + C₃

 Total charge for capacitors in parallel Qtotal = Q₁ + Q₂ + Q₃

 Magnification of an image m = -Di/Do = Hi/Ho

 Mass Energy Equivalence E = mc²

 Momentum of a photon p = E/c = hf/c = h/λ

 Work Function of cutoff wavelength is known Φ = hf₀

 Photoelectric effect including stopping potential E = Φ + qVs

 Photoelectric effect including Kmax E = Φ + Kmax

 Energy of a photon E = hf = hc/λ

 EMF generated for a moving bar through a magnetic field ε = Bl(this is L, not I)v

 Faraday's Law of electromagnetic induction ε = -(NBA)/(∆t) = -Φ/∆t

 Magnetic Flux Φ = NBA = NBAcosθ

 Thin lens equation ( /f) = ( /Di) + ( /Do)

 Snell's Law n₁sinθi = n₂sinθr

 Index of Refraction n = c/v

 Critical Angle sinθc = n₁/n₂ (n₂>n₁)

 Thin membrane interference nt = ___λ (Constructive slit & Destructive slits: ___ = m + ½)(Destructive slit & Constructive slits: ___ = m)

 Total resistance for resistors in series Rtotal = R₁ + R₂ + R₃

 Total resistance for resistors in parallel Rtotal =/ (( /R₁)+( /R₂)+( /R₃))

 Charge including time Q = It

 Resistance in a wire of length L and area A Rwire = (pL)/A

 Pressure exerted on an area A P = F/A

 Absolute pressure Pabs = Patm + Pgauge = Patm + pgh

 Gauge pressure Pgauge = pgh

 Volume flow rate I = Av or A₁v₁ = A₂v₂

 Buoyant force Fb = p(fluid)V(fluid)g

 Density p = M/V

 Bernoulli's Equation P₁ + ½pv² + pg∆y = P₂ + ½pv² + pg∆y

 Force on a charge q moving parallel to a magnetic field (B) Newtons (PARALLEL!!)

 Force on a current carrying wire perpendicular to a magnetic field Fb = BIxl ( B i ⊥ L )

 Force between two parallel current carrying wires of length L F = (µ₀/( π))((I₁I₂ (as in i) l (as in L))/r

 Limits of human sight nm -nm

 The wave equation v = fλ

 Magnetic field a distance r from a current carrying wire Bwire = (µ₀/( π))(I (as in i) / r)

 New wavelength if the original wavelength and n's are known λ₂ = (n₁λ₁)/n₂ -> (n₁λ₁ = n₂λ₂)

 Capacitance if area of plates is known C = kε₀A/d

 Electric Potential around a point charge q V = K(Q/r)

 K in electrostatics K =/( πε₀) =E-Nm²/C²

 Force on a charge (q) in an Electric field (E) Fe = qE

 Coulomb's Law Fe = K(|q₁Q₂|/r²)

 Charge on a capacitor Q = CV

 Energy stored in a capacitor Ucap = ½QV = ½CV² = ½Q²/C

 Formula definition of work W = Fd = Fdcosθ

 Electric Potential Energy Ue = qV

 Electric-field a distance r from a point charge (q) E= K(|q|/r²)

 Ohm's Law V = IR

 Total charge for capacitors in series Q₁ = Q₂ = Q₃

 Terminal Voltage (Vab) if external resistance (Rext) is known Vab = IRext

 Terminal Voltage (Vab) if EMF (ε) is known Vab = ε - Irint

 Voltage across the plates of a capacitor if the E-field is known Ed = V

 Electric Energy E = VIt = I²Rt = (V²/R)t

 Electric Power P =IV = I²R = V²/R

 Force on a charge (q) moving perpendiculary through a magnetic field (B) Fb = qvxB

 Work to move a point charge (q) a distance r away from another charge (Q) Fe = K(q₁Q₂/r)

 Change in Heat during an isovolumetric process Q = nCv∆T

 Frequency of a spring mass f =/( π√(m/k)) =/T

 Period of a pendulum T =π√(l/g)

 Frictional Force Ff = Fnµ

 Frictional Force on an incline Ff = mgcosθµ

 Acceleration a = ∆v/t = (v-v₀)/t

 Average Speed S = dtotal/ttotal

 Velocity v = ∆x/t

 Average Velocity of a molecule of gas vrms = √(( kT)/m)

 Change in internal energy during a cyclic process ∆U =J (JAIL!)

 First Law of Thermodynamics ∆U = ∆Q + ∆W

 Acceleration of a mass sliding up an incline (with friction) a = gsinθ + gcosθµ

 Acceleration of a mass sliding down an incline (with friction) a = gsinθ - gcosθµ or a = gcosθµ - gsinθ

 Heat required to raise the temperature of a substance ∆Q = mc∆T

 Heat required to vaporize a substance ∆Q = mL((sub)v)

 Heat required to melt a substance ∆Q = mL((sub)f)

 Forgotten Power Equation P = Fv

 Energy of a spring-mass when spring is neither at max displacement nor equilibrium ½kA² = ½kA₂ + ½mv²

 Ideal Efficiency εideal = εcarnot = (Th-Tl)/Th

 Newton's Second Law of motion ∑F = ma

 Torque J = rxF = rFsinθ

 Ideal Gas Law PV = nRT = NkT

 Boyle's Law P₁V₁ = P₂V₂

 Heat of an isobaric process ∆Q = nCp∆T

 Work (thermo) W = -P∆V

 Internal Energy of an ideal gas U = ( / )nRT

 Actual efficiency εactual = |Wnet|/Qin

 Kinetic Energy K = ½mv²

 Hooke's Law Fspring = -kx (A?)

 Gravitational Potential Energy Ug = mg∆y

 Newton's Law of Universal Gravitation Fg = G (m₁m₂)/r²

 Centripetal Acceleration ac = v²/r

 Acceleration due to gravity g = G m/(d/ )²

 Momentum p = mv

 Impulse J = Ft = mv - mv₀

 Weight w =mg

 First Kinematic v = v₀ + at

 Second Kinematic ∆x = v₀t + ½at²

 Third Kinematic v² = v₀² +a∆x

 Beat frequency fbeat = |f₁-f₂|

 Length L of a string producing the fundamental frequency (f) L = vstring/( f) = (√(T/(m/l))(/( f)

 Natural frequency of a closed tube of length lL f = v/( L)

 Wavelength in an open tube of length L λ =L

 Frequency of a pendulum f =/( π√(l/g))

 Velocity of waves on a string if tension is known vstring = √(T/(m/l))

 Period of a spring mass T =π√(m/k)

 Charle's Law V₁/T₁ = V₂/T₂

 Gay-Lussac's Law P₁/T₁ = P₂/T₂

 Work done during an isovolumetric process ∆W =J (no ∆V = no area on the curve = no work)

 Change in internal energy during an isothermal process ∆U =J (no change in temp = no change in U)

 Spring Potential Energy Us = ½kA²

 Heat due to friction on an incline Q = mgcosθµd

 Heat due to friction on level surface Q = Fnµd

 Speed S = d/t (this is not velocity because it is not a vector)

 First Angular Kinematic ω = ω₀ + αt

 Second Angular Kinematic ∆θ = ω₀t + ½αt²

 Third Angular Kinematic ω² = ω₀² +α∆θ

 Centripetal Acceleration with angular (we've already done linear) quantaties ac = ω²/r

 Moment of Inertia of a point I = mr²

 Center of mass Xcm = (X₁m₁ + X₂m₂ + X₃m₃)/ mtotal

 Centripetal Acceleration in radians of the second hand of a clock ac =π²r/sec

 Rotational Kinetic Energy Krot = ½Iω²

 Net Torque when the moment of inertia is known ∑J = Iα

 Angular momentum for aD object rotating L = Iω

 Position as a function of time using angular quantities ω = θ/t

 Conservation of Angular Momentum when the ball strikes the bar and causes rotation rxp = Iω = (mr² + ( / )ml² (as in L))ω (where I = Iball +Irod; Iball = mr² and Irod = ( / )ml²)

 Energy of a spring mass when the string is at maximum displacement Us = ½kA²

 Height of the block in terms of θ and l ∆y = l-lcosθ

 Units of Power (not watts) Watt = J/sec

 Units of Current (nat amps) Amp = C/sec

 Three Power formulas P = Fv = E/t = VI (as in i)

 Combined Gas Law P₁V₁/T₁ = P₂V₂/T₂

 Limits of human hearing -Hz

 Diameter of a Hydrogen Atom E- m

 Units of Electric Field (capacitors) V/m

 Units of Electric Field (point charges) N/C

 Units of Momentum kgm/s

 Units of Energy Joules or eV

 Units of the spring constant k N/m

 R. A. Milliken Oil drop experiment, elemental charge (e)

 Thomas Young Double slit experiment, light as a wave

 Davisson and Germer Electrons are waves

 J.J. Thompson Cathode ray tubes, charge to mass ratio (q/m) for an electron

 Ernest Rutherford Gold foil experiment, nucleus is a small and positively charged

 Neils Bohr Quantized energy levels and explained the bright line spectra

### 精选好课

在线
客服

#### 官方客服

如遇课程或支付问题，请联系客服为您解决

电话客服：01086461369

顾问：15350125059

工作时间：9:00-18:00，节假日休息 //