首页 / 物理1

物理1

共33节课4701次学习
    • 课程信息
    • 课程目录

     

     AP物理1

     

    (AP Physics1)是以代数为基础的大学初级物理课程。它包含牛顿力学、功、能量、功率、机械波和声音以及电路,换句话说,就是学习基本物理概念。AP物理1是最初级的物理课程,是一门不需要任何背景知识的课程。

     

    AP物理1考点

    1、运动学&牛顿定律(kinetics,dynamics)

    运动学和牛顿定律是力学的基础,往往跟力学的各个章节结合起来,也经常跟电磁学结合起来考查,是考试的重点。

    这一部分的主要考点包括:

    uniformly accelerated motion 匀加速运动

    velocity-time diagram 速度-时间图

    projectile motion 抛体运动

    Newton’s Law 牛顿定律

    Free-body diagram 受力分析图

    2、功&能&动量(work,energy, impulse)

    功能这一部分是力学的核心,还特别容易和振动、摆部分综合出题。

    其主要考点集中于:

    work 功

    energy conservation 能量守恒

    kinetic and potential energy 动能与势能

    the conservation of mechanical energy 机械能守恒

    power 功率

    impulse 冲量

    conservation of linear momentum 动量守恒

    elasticand inelastic collision 弹性和非弹性碰撞。

    3、圆周运动和转动(circular motion, rotational motion)

    这部分内容对大多数学生来说是个难点,但是物理1这部分不会考定量计算,只会考对概念定性的理解,难度并不是太大。

    其考点主要有:

    Uniformly Circular Motion 匀速圆周运动

    Newton’s Law of gravitation 牛顿万有引力

    Torque 力矩

    equilibrium 平衡

    Rotational kinematics 转动运动学

    Rotational Dynamics 转动力学

    4、振动和波 (oscillation & wave)

    振动和波这部分属于考试的重点,而这部分内容又是高中物理所不太涉及到的地方,需要同学们着重复习一下。

    主要的考点有:

    Simple Harmonic Motion 简谐振动

    Pendulum 摆

    Traveling waves 行波

    Standing waves 驻波

    Doppler effect 多普勒效应

    5、电场力和纯电阻电路 (electrostatics and DC circuits)

    这部分知识点在物理1、2的考试中都有涉及,主要是在物理2的考试中出现,在物理1中相对比较简单。

    主要涉及的考点有:

    Electric Forces 电场力

    Electric Fields 电场

    Conductor 导体

    Ohm’s Law 欧姆定律

    Electric power 电功率

     

    考试形式和时间分部

    考试时间——180分钟

    第I卷(权重50%):选择题,计算器可以使用

    45个单选题(四选一),5个双选题(四选二,只有全部选对才可以得分,漏选和选错都不得分)

    总计90分钟,50题

    第II卷(权重50%):解答题,计算器可以使用

    90分钟,5题

    公式合集

    Equivalent capacitance (capacitors in series)

    Ceq =/ (( /C₁)+( /C₂)+( /C₃))

     

    Equivalent capacitance (capacitors in parallel)

    Ceq = C₁ + C₂ + C₃ 

     

    Total charge for capacitors in parallel

    Qtotal = Q₁ + Q₂ + Q₃ 

     

    Magnification of an image

    m = -Di/Do = Hi/Ho

     

    Mass Energy Equivalence

    E = mc²

     

    Momentum of a photon

    p = E/c = hf/c = h/λ

     

    Work Function of cutoff wavelength is known

    Φ = hf₀ 

     

    Photoelectric effect including stopping potential

    E = Φ + qVs

     

    Photoelectric effect including Kmax

    E = Φ + Kmax

     

    Energy of a photon

    E = hf = hc/λ

     

    EMF generated for a moving bar through a magnetic field

    ε = Bl(this is L, not I)v

     

    Faraday's Law of electromagnetic induction

    ε = -(NBA)/(∆t) = -Φ/∆t

     

    Magnetic Flux

    Φ = NBA = NBAcosθ

     

    Thin lens equation

    ( /f) = ( /Di) + ( /Do)

     

    Snell's Law

    n₁sinθi = n₂sinθr

     

    Index of Refraction

    n = c/v

     

    Critical Angle

    sinθc = n₁/n₂ (n₂>n₁)

     

    Thin membrane interference

    nt = ___λ (Constructive slit & Destructive slits: ___ = m + ½)(Destructive slit & Constructive slits: ___ = m)

     

    Total resistance for resistors in series

     Rtotal = R₁ + R₂ + R₃

     

    Total resistance for resistors in parallel

     Rtotal =/ (( /R₁)+( /R₂)+( /R₃))

     

    Charge including time

     Q = It

     

    Resistance in a wire of length L and area A

     Rwire = (pL)/A

     

     Pressure exerted on an area A

     P = F/A

     

     Absolute pressure

     Pabs = Patm + Pgauge = Patm + pgh

     

     Gauge pressure

     Pgauge = pgh

     

     Volume flow rate

     I = Av or A₁v₁ = A₂v₂

     

     Buoyant force

     Fb = p(fluid)V(fluid)g

     

     Density

     p = M/V

     

     Bernoulli's Equation

     P₁ + ½pv² + pg∆y = P₂ + ½pv² + pg∆y

     

     Force on a charge q moving parallel to a magnetic field (B)

     Newtons (PARALLEL!!)

     

    Force on a current carrying wire perpendicular to a magnetic field

    Fb = BIxl ( B i ⊥ L )

     

    Force between two parallel current carrying wires of length L

    F = (µ₀/( π))((I₁I₂ (as in i) l (as in L))/r

     

    Limits of human sight

    nm -nm

     

    The wave equation

    v = fλ

     

    Magnetic field a distance r from a current carrying wire

    Bwire = (µ₀/( π))(I (as in i) / r)

     

    New wavelength if the original wavelength and n's are known

    λ₂ = (n₁λ₁)/n₂ -> (n₁λ₁ = n₂λ₂)

     

    Capacitance if area of plates is known

    C = kε₀A/d

     

    Electric Potential around a point charge q

    V = K(Q/r)

     

    K in electrostatics

    K =/( πε₀) =E-Nm²/C²

     

    Force on a charge (q) in an Electric field (E)

    Fe = qE

     

    Coulomb's Law

    Fe = K(|q₁Q₂|/r²)

     

    Charge on a capacitor

    Q = CV

     

    Energy stored in a capacitor

    Ucap = ½QV = ½CV² = ½Q²/C

     

    Formula definition of work

    W = Fd = Fdcosθ

     

    Electric Potential Energy

    Ue = qV

     

    Electric-field a distance r from a point charge (q)

    E= K(|q|/r²)

     

    Ohm's Law

    V = IR

     

    Total charge for capacitors in series

    Q₁ = Q₂ = Q₃

     

    Terminal Voltage (Vab) if external resistance (Rext) is known

    Vab = IRext

     

    Terminal Voltage (Vab) if EMF (ε) is known

    Vab = ε - Irint

     

    Voltage across the plates of a capacitor if the E-field is known

    Ed = V

     

    Electric Energy

    E = VIt = I²Rt = (V²/R)t

     

    Electric Power

    P =IV = I²R = V²/R

     

    Force on a charge (q) moving perpendiculary through a magnetic field (B)

    Fb = qvxB

     

    Work to move a point charge (q) a distance r away from another charge (Q)

    Fe = K(q₁Q₂/r)

     

    Change in Heat during an isovolumetric process

    Q = nCv∆T

     

    Frequency of a spring mass

    f =/( π√(m/k)) =/T

     

    Period of a pendulum

    T =π√(l/g)

     

    Frictional Force

    Ff = Fnµ

     

    Frictional Force on an incline

    Ff = mgcosθµ

     

    Acceleration

    a = ∆v/t = (v-v₀)/t

     

    Average Speed

    S = dtotal/ttotal

     

    Velocity

    v = ∆x/t

     

    Average Velocity of a molecule of gas

    vrms = √(( kT)/m)

     

    Change in internal energy during a cyclic process

    ∆U =J (JAIL!)

     

    First Law of Thermodynamics

    ∆U = ∆Q + ∆W

     

    Acceleration of a mass sliding up an incline (with friction)

    a = gsinθ + gcosθµ

     

    Acceleration of a mass sliding down an incline (with friction)

    a = gsinθ - gcosθµ or a = gcosθµ - gsinθ

     

    Heat required to raise the temperature of a substance

    ∆Q = mc∆T

     

    Heat required to vaporize a substance

    ∆Q = mL((sub)v)

     

    Heat required to melt a substance

    ∆Q = mL((sub)f)

     

    Forgotten Power Equation

    P = Fv

     

    Energy of a spring-mass when spring is neither at max displacement nor equilibrium

    ½kA² = ½kA₂ + ½mv²

     

    Ideal Efficiency

    εideal = εcarnot = (Th-Tl)/Th

     

    Newton's Second Law of motion

    ∑F = ma

     

    Torque

    J = rxF = rFsinθ

     

    Ideal Gas Law

    PV = nRT = NkT

     

    Boyle's Law

    P₁V₁ = P₂V₂

     

    Heat of an isobaric process

    ∆Q = nCp∆T

     

    Work (thermo)

    W = -P∆V

     

    Internal Energy of an ideal gas

    U = ( / )nRT

     

    Actual efficiency

    εactual = |Wnet|/Qin

     

    Kinetic Energy

    K = ½mv²

     

    Hooke's Law

    Fspring = -kx (A?)

     

    Gravitational Potential Energy

    Ug = mg∆y

     

    Newton's Law of Universal Gravitation

    Fg = G (m₁m₂)/r²

     

    Centripetal Acceleration

    ac = v²/r

     

    Acceleration due to gravity

    g = G m/(d/ )²

     

    Momentum

    p = mv

     

    Impulse

    J = Ft = mv - mv₀

     

    Weight

    w =mg

     

    First Kinematic

    v = v₀ + at

     

    Second Kinematic

    ∆x = v₀t + ½at²

     

    Third Kinematic

    v² = v₀² +a∆x

     

    Beat frequency

    fbeat = |f₁-f₂|

     

    Length L of a string producing the fundamental frequency (f)

    L = vstring/( f) = (√(T/(m/l))(/( f)

     

    Natural frequency of a closed tube of length lL

    f = v/( L)

     

    Wavelength in an open tube of length L

    λ =L

     

    Frequency of a pendulum

    f =/( π√(l/g))

     

    Velocity of waves on a string if tension is known

    vstring = √(T/(m/l))

     

    Period of a spring mass

    T =π√(m/k)

     

    Charle's Law

    V₁/T₁ = V₂/T₂

     

    Gay-Lussac's Law

    P₁/T₁ = P₂/T₂

     

    Work done during an isovolumetric process

    ∆W =J (no ∆V = no area on the curve = no work)

     

    Change in internal energy during an isothermal process

    ∆U =J (no change in temp = no change in U)

     

    Spring Potential Energy

    Us = ½kA²

     

    Heat due to friction on an incline

    Q = mgcosθµd

     

    Heat due to friction on level surface

    Q = Fnµd

     

    Speed

    S = d/t (this is not velocity because it is not a vector)

     

    First Angular Kinematic

    ω = ω₀ + αt

     

    Second Angular Kinematic

    ∆θ = ω₀t + ½αt²

     

    Third Angular Kinematic

    ω² = ω₀² +α∆θ

     

    Centripetal Acceleration with angular (we've already done linear) quantaties

    ac = ω²/r

     

    Moment of Inertia of a point

    I = mr²

     

    Center of mass

    Xcm = (X₁m₁ + X₂m₂ + X₃m₃)/ mtotal

     

    Centripetal Acceleration in radians of the second hand of a clock

    ac =π²r/sec

     

    Rotational Kinetic Energy

    Krot = ½Iω²

     

    Net Torque when the moment of inertia is known

    ∑J = Iα

     

    Angular momentum for aD object rotating

    L = Iω

     

    Position as a function of time using angular quantities

    ω = θ/t

     

    Conservation of Angular Momentum when the ball strikes the bar and causes rotation

    rxp = Iω = (mr² + ( / )ml² (as in L))ω (where I = Iball +Irod; Iball = mr² and Irod = ( / )ml²)

     

    Energy of a spring mass when the string is at maximum displacement

    Us = ½kA²

     

    Height of the block in terms of θ and l

    ∆y = l-lcosθ

     

    Units of Power (not watts)

    Watt = J/sec

     

    Units of Current (nat amps)

    Amp = C/sec

     

    Three Power formulas

    P = Fv = E/t = VI (as in i)

     

    Combined Gas Law

    P₁V₁/T₁ = P₂V₂/T₂

     

    Limits of human hearing

    -Hz

     

    Diameter of a Hydrogen Atom

     E- m

     

    Units of Electric Field (capacitors)

    V/m

     

    Units of Electric Field (point charges)

    N/C

     

    Units of Momentum

    kgm/s

     

    Units of Energy

    Joules or eV

     

    Units of the spring constant k

    N/m

     

    R. A. Milliken

    Oil drop experiment, elemental charge (e)

     

    Thomas Young

    Double slit experiment, light as a wave

     

    Davisson and Germer

    Electrons are waves

     

    J.J. Thompson

    Cathode ray tubes, charge to mass ratio (q/m) for an electron

     

    Ernest Rutherford

    Gold foil experiment, nucleus is a small and positively charged

     

    Neils Bohr

    Quantized energy levels and explained the bright line spectra

     

     

     

    在线
    客服

    官方客服

    如遇课程或支付问题,请联系客服为您解决

    电话客服:01086461369

    顾问:15350125059

    工作时间:9:00-18:00,节假日休息

    //